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Abstract. The planar point-objective location problem has attracted considerable interest among 
Location Theory researchers. The result has been a number of papers giving properties or algorithms 
for particular instances of the problem. However, most of these results are only valid when the 
feasible region where the facility is to be located is the whole space JR 2, which is a rather inaccurate 
approximation in many real world location problems. 
In this paper, the feasible region is allowed to be any closed, not necessarily convex, set S in IR 2. 
The special structure of this nonconvex vector-optimization problem is exploited, leading to a geo- 
metrical resolution procedure when the feasible region S can be decomposed into a finite number of 
(not necessarily disjoint) polyhedra. 
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Introduction 

Let A be a finite set of points in R 2 (demand points). A facility is to be located 
at some point x within a feasible set S C_ IR 2 in such a way that all the demand 
points have the facility as close as possible (closeness is measured by some metric 
d in IR2). This leads us to the following vector-optimization problem, known in 
the literature as the planar point-objective location problem (Wendell and Hurter, 
1973): 

P O L P ( A , S ) "  min(d(x,a) " a E A), 
zES 

where the minimization must be understood in the multiobjective sense (see, e.g., 
Chankong-Haimes, 1983). 

Among the different solution concepts proposed for POLP(A, S) (see, e.g., 
Wendell and Hurter, 1973), in this paper we address the problem of determining 
the set WE(A ,  S) of (globally) weakly efficient solutions to POLP(A, S). 

We recall that a point x E S is said to be a weakly efficient solution to 
POLP(A,  S) (respect. locally efficient solution) iff there exists no y E S such 
that d(y, a) < d(x, a) for all a E A (respect. there exists some V, open neighbor- 
hood of x in S, such that no y E V fq S verifies d(y, a) < d(x, a) Va E A). 

Several reasons motivate the study of the aforementioned solution set. First 
of all, in real problems planners might have to decide the location of the facility 
according to different and conflicting criteria. In such cases, the knowledge of 
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W E ( A ,  S) could help them to decide where to locate (or at least where not to 
locate): the definition above suggests that only the points in W E ( A ,  S) should be 
considered as admissible locations for a desirable facility. On the other hand, this 
solution set has been identified as the set of optimal solutions to a wide family 
of single-objective optimization problems (Plastria, 1984), thus the determination 
of W E ( A ,  S) provides a broad-sense sensitivity analysis, enabling the statement 
of localization theorems (Juel and Love, 1983; Plastria, 1984) for single-objective 
problems. 

A number of papers have been focused on finding the set of weakly efficient 
solutions and other related solution sets (among others, Duffer and Michelot, 1986; 
Pelegrfn and Fern~adez, 1988; Plastffa, 1983; Wendell et al., 1977, and some of 
the references mentioned above). However, in most of the studies we are aware of, 
the feasible set S is assumed to coincide with I~ 2, which, as pointed out by Hansen 
et al. (1982), may be a rather inaccurate approximation in real world problems. 

In this paper we study the constrained problem POLP(A, S) when d is the 
Euclidean distance, and the feasible region S is an arbitrary closed set in ~2. 
In Section 1, we review some recent results that characterize the set W E ( A ,  S) 
when S is a closed convex set in ~2. In Section 2 the concept of closed convex 
decomposition is introduced, which leads to a characterization of W E ( A ,  S). The 
properties obtained enable a geometrical construction for W E ( A ,  S) when S is a 
finite union of polyhedra in ~2. Such construction is discussed in Section 3. 

1. Notation and Basic Results 

Throughout this paper, the following notation is used: 

For any X C_ ]R 2, let bd(X) represent its boundary, i (X)  its interior 

and conv(X) its convex hull. 

In a recent paper (Carrizosa et al., 1993), the authors have characterized 
W E ( A ,  S) when S is a closed convex set in ~2. As some of their results are 
the comerstone for the nonconvex case discussed in this paper, they are stated here. 

THEOREM 1. Let X be a nonempty closed convex set in •2 and let y E ~2. The 
following statements are equivalent: 

(i) There exists no x E X such that 

d(a, x) < d(a, y) for all a E A. 
(ii) There exists a* E conv(A) such that 

d(a*, y) <~ d(a*, x) for all x E X.  

Theorem 1 is used in Carrizosa et al. (1993) to characterize the set W E ( A ,  S) 
when S is closed and convex. 
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Given a nonempty closed convex set X in ~2 and y E ~ 2 ,  denote by projx (y) 
the point in X closest to y, i.e.: 

projx (y) = arg rain d(x, y). 
xEX " 

Besides, for any Y C ~2, we denote by projx (Y) the set 

projx(Y) = [J projx(y), 
yEY 

THEOREM 2. For any nonempty closed convex set S in ]~2, 

W E ( A ,  S) = projs conv(A). 

Remark that, as a particular case, taking S --- ]~2, one reobtains the well-known 
result W E ( A ,  R z) = conv(A) (e.g. Wendell and Hurter, 1973). See Carrizosa 
et al. (1993) for further implications. 

2. Weak Efficiency and ccd's 

Simple counterexamples show that, as soon as the convexity assumption on S is 
dropped, Theorem 2 fails. 

Besides, the equality between local and global weak efficiency does not hold 
any longer. However, not everything is lost: although Theorem 2 requires the 
feasible region to be convex, it can be used for nonconvex situations by splitting 
S into convex pieces: 

DEFINITION 1. Let S be a nonempty set in R 2. The family of sets {Si : i E [} 
is said to be a closed convex decomposition (ccd) of S iff each Si is a nonempty 
closed convex set, and S = UiEISi.  

It is easy to see that, if {Si : i E I )  is a ccd of S, then (by Theorem 2) W E ( A ,  S) C_ 
Uisi projs~ (conv(A)),  but equality does not necessarily hold. Anyway, as shown 
in this section, the set W E ( A ,  S) can be characterized in terms of its ccd's. 

First we introduce some notation: For any x E ~2 and Y C_ R 2, Y ~ (~, let 
B ( x ;  Y )  = {2: E ]I~ 2 : d(x, z) <. d(x, y) Vy E Y}; furthermore, for any nonempty 
set X _ ~2, let B(X;  Y) : UxexB(x;  Y). 

An example is depicted in Figure 1, where the set X is the closed segment with 
endpoints a and b, and Y is the shaded triangle. 

The next theorem shows that the problem of finding W E ( A ,  S) can always be 
reduced to the determination of (intersections of) sets of the form B ( X ; Y ) .  

THEOREM 3. Let S be an arbitrary set in tR z, and let { Si : i E I}  be a ccd of  S. 
Then 

W E ( A , S )  = A B(conv(A); Si) @ S. 
iEI 



8 0  E. CARRIZOSA ET AL. 

,' i 
I !  ' ",, 

- . . " . .  -.-::_.'" 

Fig. I. An example of B(X, Y). 

Proof. Let x E S = UiEISi. By definition, we have: x E W E ( A ,  UiesSi) iff 
the set {y E Si " d(y, a) < d(x, a) Va E A) is empty for all i E I.  By Theorem l, 
the latter assertion is equivalent to 

Vi E I 3ai E conv(A) such that d(ai, x) <. min d(ai, y) 
yESi 

i.e. 

Vi E I 3ai E conv(A) such that x E B(ai;  Si) 

i.e. (recall that B(conv(A); Si) = Ua6conv(A)B(a; Si)) 

x E B(conv(a) ;  Si) for all i E I 

i.e. 

x E ( '1B(conv(A);  Si). 
i~I 

Thus W E ( A ,  S) = (ni~zB(conv(A); Si)) n S, as asserted. 

COROLLARY 1. The set of weakly efficientpoints does not change if all the points 
in A which are not extreme points of eonv( A ) are deleted from A. 

Observe that the ccd for a set is not necessarily unique, so that the simpler the ccd, 
the easier the determination of W E ( A ,  S). For practical purposes, it would be of 
interest to simplify the expression obtained in Theorem 3. The definition below 
gives some help in this sense. 
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Fig. 2. conv(A)-furthest points from X. 

DEFINITION 2. Let X, Y be two nonempty sets in ]R 2, X being convex and closed. 
A point y E Y is said to be Y-furthest from X iff {z E Y : y E [z, projx(z)] } = 
{y}. 

For simplicity, the set of conv(A)-furthest points from X is denoted hereafter 
F(X). See Figure 2 for an illustration. 

THEOREM 4. For any nonempty closed convex set X in ~2, B(conv(A); X) = 
(conv(A) N X) U B(F(X)\X; X). 

Proof. By definition of B(.; .) and F(X), and using the fact that B(a; X)  = {a} 
whenever a E X,  we only have to show that 

B(conv(A);X)\(conv(A) N X) C_ B(F(X)\X;X) .  

Let z be an arbitrary point in B(conv(A); X) ,  x ~g conv(A) M X,  Then, there 
exists a E conv(A) such that x E B(a; X). Furthermore, a ~ X;  indeed, else x E 
B(a; X)  = {a}, thus x E conv(A) N X.  If a E F(X)\X,  there is nothing to show. 
Else, a ~ F(X), thus by definition of F(X), there exists b ~ a, b E conv(A) @ 
(F(X)\X)suchthata E [b, projx(b)],thusx E B(b;x) C B(F(X)\X;X),and 
this completes the proof. 

REMARK 3. For practical purposes, some other expressions might be of more 
interest. For example, in the next section we use B(conv(A); X)  = (conv(A) @ 
X) U B(F(X)\i(X); X), whose validity is a consequence of Theorem 4 above. 

3. A Geometrical Construction 

The general results obtained in Section 2 enable an explicit construction of WE(A, S) 
for problems with special structure. In this section we address problem POLP(A, S) 
under the assumption that S admits a finite polyhedral ccd {Si : 1 ~< i ~< p}, i.e. 
{Si : 1 ~< i ~< p} is a ccd of S and each Si is a polyhedron in It~ 2. 
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Fig. 3. The planar subdivision {R(h) : h  E G}. 

By Theorem 3, WE(A, S) = N~=lB(Conv(A); Si) M S, thus we only need to 
know how to obtain sets of the form B(conv(A); X) ,  when X is a polyhedron in 
IR 2 . 

We only consider here the case when X is a solid polyhedron (i.e., a polyhedron 
with nonempty interior). The case i(X) = (~ is completely analogous, and will not 
be considered here�9 

Let G be the set of the faces of X. Recall (see, e.g., Brondsted, 1983), that X 
is the unique face with dimension 2, the nondegenerate edges of X are the faces 
with dimension 1, and the vertices of X are the faces with dimension 0. 

For any f E G let R(f) be the polytope 

R(f) = cl{z E ]Re: projx(z) E f i(f)} 

where cl(.) denotes the closure operator, and r i ( f )  is the relative interior of f .  
Clearly, {R( f )  : f E G} is a polyhedral planar subdivision with the following 
property: 

�9 If d i m f  = 2 (i.e., f = X), then R(f) = X. 
�9 If d i m f  = 1, then R ( f )  is an unbounded rectangular region which has f 

as base. 

�9 If d i m f  = 0, then R ( f )  is a cone with vertex at f .  

See Figure 3. 
By Remark 3, B(conv(A); X)  = (conv(A) N X)  U B(F(X)\i(X); X), thus 

the problem is reduced to obtaining B(F(X)\i(X); X). 
A further reduction is gotten by observing that the set F(X)\i(X) can be 

decomposed into a finite number of closed segments (they all in bd (cony(A))), 
each of them being contained in one of the regions R(f). In fact, the determination 
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Fig. 4. F(X)\i(X). 
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of F(X)  is straightforward once {R( f )  : f E G} is known. This idea is depicted 
in Figure 4; X is the shaded rectangle, and A = {a, b, c}. Indeed, 

F(X)\i(X) = [a, d] U [a, e] U [ f ,  c] U [c, b]. 

Hence, one only needs to know how to determine sets of the form B(1; X),  
when l is a nondegenerate closed segment, l = [a, b], say, with I N i(X) = O, and 
l C R(f)  for some face f of X,  0 ~< d i m f  ~< 1. We study separately these two 
cases: 

Case 1. dim f = 0. Then f is a vertex v of X.  It is easy to see (by Theorem 1) 
that B(1; X)  = B({ a, b}; { v}), i.e. B(l; X) is the union of the balls centered at a 
and b and containing v in their boundary. 

Case 2. d i m f  = 1. Denote by r the line containing f ,  and let ~r(.) be the 
symmetry with respect to the line containing I. Then, by definition, B(l; X) is the 
set of discs whose center is a point in 1 = [a, b] and are tangent to r (thus also tangent 
to or(r)). Denoting respectively by a' and b' the points projx(a ) and projx(b), it 
follows that B(1;X) = B(a; {a'}) U B(b; {b'}) U conv({a',b',cr(a'),cr(b')). An 
example is depicted in Figure 5. 

To conclude this section, we summarize the procedure of determination of 
WE(S)  when S = U~= 1Sk and each Sk is a polyhedron in •2. 

�9 For any k, 1 ~< k ~< p d o  
�9 Find Gk, the set of faces of Sk 
�9 Find {R( f )  : f E Gk} 
�9 Decompose F(Sk)\i(Sk) into a finite family Lk of closed segments, each 

of which is wholly contained in some R(f). 
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X 
Fig. 5. B(l;X). 

b 

I C 

Fig. 6. (a) The example. 

�9 For any I C Lk find B(l; Sk) 
�9 B(conv(A);  Sk) +-- UleLkB(1; Sk) 

�9 W E ( S )  +- {cony(A) tO (NP=lB(Conv(A); Sk))) N S. 

As an illustration consider the example depicted in Figure 6: A = {a, b, c}, and 
the feasible set S is the polygonal region represented in Figure 6(a). 

A ccd for S is {S1, $2, $3} (see Figure 6(b)), from which it is easily seen that 
the set W E ( A ,  S) consists of the thick lines and the shadowed area in Figure 6(c), 
where the point d is at distance d(a, proj& (a)) from a. 

4. Concluding Remarks 

In this paper we have addressed the point-objective location problem under general 
(not necessarily convex) locational constraints. The concept of ccd's is introduced, 
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S:  

I s, 
Fig. 6. (b)TheccdSi,S2, S3. 

I d 

Fig. 6. (c) WE(A,  S). 

which enables the characterization of the set WE(A, S) of weakly efficient solu- 
tions. 

When S admits a finite polyhedral ccd, WE(A, S) can be effectively con- 
stmcted. Furthermore, the geometrical construction can be adapted to arbitrary 
ccd's {Si : i E I} as soon as the corresponding sets B(1; Si) can be explicitly 
determined. 

Such is the case, for example, of discs: it can be seen that, i f X  is a disc, B(l; X) 
is a region enclosed by some arcs of circumference, which can be readily obtained. 
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